

CLASS: XII
22.09.2019

Time Allotted: 3 Hrs .
Max.Marks: 80

General Instructions:

(i) All questions are compulsory.
(ii) This question paper contains 36 questions.
(iii) Question 1-20 in Section A are MCQ/Very short-answer type questions carrying 1 mark each.
(iv) Question21-26 in Section B are short-answer type questions carrying 2 marks each.
(v) Question 27-32 in Section C are long-answer-I type questions carrying 4 marks each.
(vi) Question 33-36 in Section D are long-answer-II type questions carrying 6 marks each.

	SECTION A	
1.	If $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow R$ be two functions defined as $\mathrm{f}(\mathrm{x})=\|x\|+x$ and $\mathrm{g}(\mathrm{x})=\|x\|-x$, for all x in R,find fog (-5).	1
2.	Find the value of $\cos ^{-1} \cos \left(\frac{7 \pi}{6}\right)$.	1
3.	Find the value of	
$\tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(\frac{1}{2}\right)$	1	
4.	Find the area bounded by the curve $\mathrm{y}=\operatorname{cosx}$, between $\mathrm{x}=0$ and $\mathrm{x}=2 \pi$.	1
5.	Evaluate: $\int \log x d x$	1
6	Evaluate: $\int_{-1}^{1}[x] d x$	1
7.	Evaluate $: \int_{0}^{2 \pi} \sin x d x$	1
8.	Evaluate: $\int_{1+\cos 2 x}^{1-\cos 2 x} d x$	1
9.	Find the area bounded by the lines $\mathrm{y}=\mathrm{x}$ and $\mathrm{x}=1$ in the first quadrant.	1
10.	A point C in the domain of a function f at which either $f^{\prime}(c)=0$ or f is not differentiable is called.----------	1

11.	$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}a x^{2}+1, x>1 \\ x+a, x \leq 1\end{array}\right.$ is differentiable at $\mathrm{x}=1$, then find the value of a. a) 2 b) 1 c) 0 d) $\frac{1}{2}$	1
12.	$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}x \operatorname{Sin} \frac{1}{x}, x \neq 0 \\ k, x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$. Find k . a) 8 b) 1 c) -1 d) 0	1
13.	If $y=x+e^{x}$, then $\frac{d^{2} x}{d y^{2}}=$ a) $\frac{1}{\left(1+e^{x}\right)^{2}}$ b) $\frac{-e^{x}}{\left(1+e^{x}\right)^{2}}$ c) $\frac{-e^{x}}{\left(1+e^{x}\right)^{3}}$ d) e^{x}	1
14.	Let R be the relation in the set N given by $\mathrm{R}=\{(a, b): a=b-2, b>6\}$. Choose the correct answer. A) $(2,4) \in R$ B) $(3,8) \in R$ C) $(6,8) \in R$ D) $(8,7) \in R$	1
15.	Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as $\mathrm{f}(\mathrm{x})=x^{4}$. Choose the correct answer. a) F is one- one onto b) f is many-one onto c) f is one-one but not onto d) f is neither one-one nor onto.	1
16.	The interval in which $y=x^{2} e^{-x}$ is increasing is a) $(-\infty, \infty)$ b) $(-2,0)$ c) $(2, \infty)$ d) $(0,2)$	1
17.	The line $\mathrm{y}=\mathrm{x}+1$ is a tangent to the curve $\mathrm{y}^{2}=4 \mathrm{x}$ at the point a) $(1,2)$ b) $(2,1)$ c) $(1,-2)$ d) $(-1,2)$	1
18.	Choose the correct principal value branch of the range of $y=\tan ^{-1} x$. a) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ b) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ c) $[0, \pi]$ d) $(0, \pi)$	1
19.	Find the area bounded by $\mathrm{f}(\mathrm{x})=\|x\|$, between $\mathrm{x}=-3$ and $\mathrm{x}=3$. a) 0 b) 18 sq.units c) 9 sq.units d) 6 sq.units	1
20.	Find the derivative of $\operatorname{Sin}(x)^{3}$ with respect to $\operatorname{Cos}(x)^{3}$. a) $-\tan \left(x^{3}\right)$ b) $-\cot \left(x^{3}\right)$ c) $\cot \left(x^{3}\right)$ d) $\tan \left(x^{3}\right)$	1
	SECTION B	
21.	Prove that $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{2}{11}\right)=\tan ^{-1}\left(\frac{3}{4}\right)$ OR Evaluate: $\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)$	2
22.	Find the value of k , if the following function is continuous at 1 $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c} k\left(x^{2}-2\right), x \leq 1 \\ 4 x+1, x>1 \end{array}\right.$	2
23.	Find $\frac{d y}{d x}$ if , $\mathrm{y}=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \quad 0<\mathrm{x}<1$	2

24.	Find $\int_{1}^{4} f(x) d x$, if $(x)=\left\{\begin{array}{r}7 x \text {; if } 1 \leq x \leq 3 \\ 8 \text {; if }: 3 \leq x \leq 4\end{array}\right.$ OR Evaluate: $\int \frac{5^{(7 x-5)}}{5^{(2 x+10)}} d x$	2
25.	The total cost $\mathrm{c}(\mathrm{x})$ associated with the production of x units of an item is given by $C(x)=0.007 x^{3}-0.003 x^{2}+15 x+4000$.Find the marginal cost when 17 units are produced.	2
26.	Evaluate: $\int \sqrt{\frac{a+x}{a-x}}-\sqrt{\frac{a-x}{a+x}} \mathrm{dx}$	2
	SECTION C	
27.	Simplify : $\tan ^{-1}\left[\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right]$	4
28.	$f: \mathbf{N} \rightarrow \mathbf{N}$ be defined by $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}x+1, \text { if } x \text { is odd } \\ x-1, \text { if } x \text { is even }\end{array}\right.$ all $x \in \mathrm{~N}$, show that f is bijective.	4
29.	Find the intervals in which the functions given below are strictly decreasing or strictly increasing:- $\mathrm{f}(\mathrm{x})=\frac{3}{10} x^{4}-\frac{4}{5} x^{3}-3 x^{2}+\frac{36}{5} \mathrm{x}+11$ OR Find the equations of the tangent and normal to the curve $\mathrm{y}=\frac{x-7}{(x-2)(x-3)}$ at the point , where it cuts x -axis.	4
30.	Find $\frac{d y}{d x}, \mathrm{y}=(\sin x)^{\cos x}+x^{\sin x}$	4
31.	If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}x^{2}+3 x+a, x \leq 1 \\ b x+2, x>1\end{array}\right.$, is differentiable. Find a and b. OR If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}\frac{1-\sin ^{3} x}{3 \cos ^{2} x}, x<\frac{\pi}{2} \\ a, x=\frac{\pi}{2} \\ \frac{b(1-\sin x)}{(\pi-2 x)^{2}}, x>\frac{\pi}{2}\end{array} \quad\right.$ is continuous at $\mathrm{x}=\frac{\pi}{2}$, find a and b .	4
32.	Evaluate: $\int \frac{x+2}{2 x^{2}+6 x+5} \mathrm{dx}$	4

	SECTION D	
33.	Let $\mathrm{f}: \mathbf{N} \rightarrow \boldsymbol{R}$ be a function defined as $\mathrm{f}(\mathrm{x})=4 x^{2}+12 \mathrm{x}+15$. show that $\mathrm{f}: \mathbf{N} \rightarrow \boldsymbol{S}$, where \mathbf{S} is the range of f is invertible. Find the inverse of f. OR Show that the relation R in the set N of Natural numbers given by $\mathrm{R}=\{(a, b):\|a-b\|$ is a multiple of 3$\}$ is an equivalence relation.	6
34.	Find the area of the region enclosed between the two circles $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$ OR Using integration find the area of region bounded by the triangle whose vertices are $(1,0),(2,2)$ and $(3,1)$.	6
35.	Evaluate: $\int \sqrt{\tan x}+\sqrt{\cot x} d x$	6
36.	Show that the right circular cone of least curved surface and given volume has an altitude equal to $\sqrt{2}$ times the radius of the base.	6

